16 research outputs found

    Coverage and Field Estimation on Bounded Domains by Diffusive Swarms

    Full text link
    In this paper, we consider stochastic coverage of bounded domains by a diffusing swarm of robots that take local measurements of an underlying scalar field. We introduce three control methodologies with diffusion, advection, and reaction as independent control inputs. We analyze the diffusion-based control strategy using standard operator semigroup-theoretic arguments. We show that the diffusion coefficient can be chosen to be dependent only on the robots' local measurements to ensure that the swarm density converges to a function proportional to the scalar field. The boundedness of the domain precludes the need to impose assumptions on decaying properties of the scalar field at infinity. Moreover, exponential convergence of the swarm density to the equilibrium follows from properties of the spectrum of the semigroup generator. In addition, we use the proposed coverage method to construct a time-inhomogenous diffusion process and apply the observability of the heat equation to reconstruct the scalar field over the entire domain from observations of the robots' random motion over a small subset of the domain. We verify our results through simulations of the coverage scenario on a 2D domain and the field estimation scenario on a 1D domain.Comment: To appear in the proceedings of the 55th IEEE Conference on Decision and Control (CDC 2016

    MULTI-AGENT CONTROL SYSTEM AND METHOD

    Get PDF
    Motion of multiple agents with identical non - linear dynamics is controlled to change density of the agents from the initial to the final density . A first control problem is formulated for optimizing a control cost of changing density of the agents from the initial density to the final density subject to dynamics of the agents in a density space . The first control problem , which is a non - linear non - convex problem over a multi - agent control and a density of the agents , is trans formed into a second control problem over the density of the agents and a product of the multi - agent control and the density of the agents . The second control problem is a non - linear convex problem that is solved to produce the control input for each section of the state space. A motion of each agent is controlled according to a control input corresponding to its section of the state space
    corecore